37 research outputs found

    Closing the Nuclear Fuel Cycle with a Simplified Minor Actinide Lanthanide Separation Process (ALSEP) and Additive Manufacturing

    Get PDF
    Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle into fast reactors. To achieve this goal, a novel process was successfully demonstrated on a laboratory scale using a bank of 1.25-cm centrifugal contactors, fabricated by additive manufacturing, and a simulant containing the major fission product elements. Americium and Cm were separated from the lanthanides with over 99.9% completion. The sum of the impurities of the Am/Cm product stream using the simulated raffinate was found to be 3.2 × 10−3 g/L. The process performance was validated using a genuine high burnup used nuclear fuel raffinate in a batch regime. Separation factors of nearly 100 for 154Eu over 241Am were achieved. All these results indicate the process scalability to an engineering scale

    Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis

    No full text
    A distinct need exists for real time information on an acid concentration of industrial aqueous streams. Acid strength affects efficiency and selectivity of many separation processes, including nuclear fuel reprocessing. Despite the seeming simplicity of the problem, no practical solution has been offered yet, particularly for the large-scale schemes involving toxic streams such as highly radioactive nuclear wastes. The classic potentiometric technique is not amiable for online measurements due to the requirements of frequent calibration/maintenance and poor long-term stability in aggressive chemical and radiation environments. Therefore, an alternative analytical method is needed. In this work, the potential of using Raman spectroscopic measurements for online monitoring of strong acid concentration in solutions relevant to dissolved used nuclear fuel was investigated. The Raman water signature was monitored for solution systems containing nitric and hydrochloric acids and their sodium salts of systematically varied composition, ionic strength, and temperature. The trivalent neodymium ion simulated the presence of multivalent f metals. The Gaussian deconvolution analysis was used to interpret observed effects of the solution nature on the Raman water O–H stretching spectrum. The generated Raman spectroscopic database was used to develop predictive multivariate regression models for the quantification of the acid and other solution components, as well as selected physicochemical properties. This method was validated using independent experiments conducted in a flow solvent extraction system
    corecore